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We investigate the influence of the starting conditions of the computational algorithm (a discrete analog of
the initial data of a continuous differential problem) on the trajectory of calculation advancement in the space
of solutions and on the obtained final (stationary, quasi-stationary, or nonstationary) solutions of Navier–
Stokes equations for mathematical modeling of high-speed gas flows. Particular consideration is given to the
analysis of the behavior of trajectories in the vicinity of the bifurcation points of branching of solutions.
Questions associated with the "carbuncle" effect — a special kind of instability of a part of the shock front
at a hypersonic flow over the front part of a blunt-nosed body — are discussed.

In [1], to investigate the features of the flow of the front parts of blunt bodies by a hypersonic gas stream
with the excitation of additional degrees of freedom (vibrational or electronic ones), computer simulation based on nu-
merical integration of the nonstationary system of complete Navier–Stokes equations was used. The calculations made
in a wide range of diagnostic variables pointed to the existence of regions of weak and strong instabilities in gases
with small values of the adiabatic index [2, 3] for finite perturbations of parameters in the incident flow. Tarnavskii
et al. [4] considered a number of problems connected with the nonuniqueness of the Navier–Stokes numerical equa-
tions and investigated the bifurcation-type instability leading to the transition of the nonstationary process from one
branch of the solution to another and its going to the stationary or quasi-stationary regime.

Under conditions close to the neutral instability regime [1], in [5] the nonstationary quasi-periodic process
caused by the carry-over of the pulse of the external perturbation source to the stationary pattern of the hypersonic
flow past the blunt front part of the body was investigated. Its basic feature is the cyclic motion of the internal shock
wave (formed at the initial instant of time) from the front shock to the surface of the body and back, which leads to
the pulsing character of the time dependence of aerodynamic coefficients, including that with a considerable decrease
in the drag coefficient at certain stages of this cyclic process.

In [6], on the basis of numerical experiments problems of obtaining asymmetric solutions in symmetric prob-
lems with the use of symmetric algorithms were investigated and analyzed. Here, in carrying out series of calculations
of the flow of bodies, in a number of ranges of diagnostic variables hysteresis phenomena were revealed: the steady-
state solutions obtained strongly depended on the choice of the initial data. In this work, the related equations of
nonuniqueness of numerical solutions of Euler and Navier–Stokes systems were discussed from the point of view of
the influence of the initial data of the differential problem (starting conditions of the discrete algorithm) and attraction
fields and attractors of the computational algorithms were determined. The common features of the solutions of all pre-
viously considered problems: the flow separation and the pulsing quasi-stationary aperiodic character of the flow were
formulated.

In the present paper, which is a sequel to the investigations of [1–6]. we investigate the important, and, in
some cases, even the key role of the starting conditions determining the phase portrait of the solution in the hyper-
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space of basic parameters. The main aspect of the paper is the tracing and analysis of the trajectory of advancement
of the numerical solution from the starting one to the final solution — stationary (if any), quasi-stationary (periodic or
aperiodic), or nonstationary (with amplitude-restricted oscillations or a nonstationary, infinitely increasing one). Particu-
lar consideration is given to the search for a bifurcation point of the solution — the possible transition from one
branch of the solution to another and to the analysis of the behavior of the solution in the vicinity of this point.

Scheme of the Computing Experiment. The front part of a blunt-nosed, heat-insulated body (sphere-cone
with angle β) is flown by a hypersonic viscous heat-conducting gas stream with a set of diagnostic variables M∞,
Re∞, Pr, ω, and γ. In the region bounded by the surface of the body, the front shock, and the outside boundary
(placed in the zone where the flow is supersonic, except for the boundary layer) numerical integration of the system
of Navier–Stokes equations is carried out. This system is closed by the equation of state (e.g., by the equation of a
perfect gas state) and by the assignment of a particular kind of temperature dependence (e.g., a power law) of viscos-
ity and heat-conductivity coefficients (for more details of the formulation of the problem in the algorithm used, see [2,
3, 7, 8]). The choice of the initial data of the differential problem — the starting conditions of the discrete algorithm,
which concludes the mathematical formulation of the problem and actually is basic in this set of numerical experi-
ments — was made so that answers to the following questions could be obtained:

1) If a stationary solution exists (i.e., a solution with a certain accuracy varied in the course of the experiment
for checking has been found), is it unique?

2) Is it possible to obtain another stationary solution by varying the starting conditions (SCs) and, if "yes",
what is the route of advancement of the solution (RAS) from the SCs to the final solution (FS)?

3) If there are no stationary regimes and only quasi- and nonstationary FSs are formed, what is the influence
of the SCs on the FSs, in particular, what is the vibration amplitude and the logarithmic decrement in the case of
"convergence" of FSs to some periodic or aperiodic regime?

4) What is the level of allowed perturbations introduced by the formulation of the SCs in making calculations
in the vicinity of the bifurcation point — branching of the numerical solution?

5) Is the transition from one branch of the solution to another single and determinate or is at least one reverse
transition of the solution possible?

6) Is, in the zone of weakly or strongly unstable FSs, the phenomenon of "carbuncle" — of "boiling" of the
central part of the front shock in the vicinity of the drag line investigated in [9, 10] on close problems — observed?

Note that in the present work the possible nonuniqueness of numerical solutions is meant; investigations of bi-
furcations of the solutions of differential problems lie in a somewhat different plane.

The scheme of the computing experiment is shown in Fig. 1. To solve a problem with some diagnostic set of
variables as SCs, the previously obtained (stationary or quasi-stationary) solution with other but close values of these
variables is substituted. Because of their large number, in the present paper the principal variable quantity is the effec-

Fig. 1. Flow of a blunt body by a hypersonic gas stream. Density isolines in
the disturbed flow region between the body surface and the front shock. M∞ =
10, Re∞ = 25,000, γ = 1.03.
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tive adiabatic index γ that permits taking into account the physicochemical processes in gas [2, 3]. With such a for-
mulation of the problem the following process is realized: from the front shock surface to the flow region the internal
shock wave formed at the initial instant of time is moving, which changes the solution. For convenience of visualiza-
tion, the scale of the radial coordinate direction in Fig. 1 in the region between the body and the front shock has been
magnified (20×).

In the integration domain, we chose four check points — "sensors" — at which changes in the gas dynamic
functions at each instant (iteration step) of the calculated time are traced: 1 — stagnation point, 2 — point of inter-
section of the drag line and the front shock, 3 and 4 — points of intersection of the coordinate ray emerging from the
spherical bluntness of the body perpendicular to the symmetry axis of the problem with the surface of the body and
the front shock, respectively. Such an arrangement of the check points in a "square" is most convenient for analyzing
the obtained information.

Results of the Computing Experiment. Because of the multiparametric character of the problem computa-
tions, their results are presented below with the following set of parameters: β = 0, M∞ = 10, Re∞ = 25,000, Pr =
0.72, and ω = 0.75. The values of γ are varied in the domain of their definition having a physical meaning:
γ 2 [1, 5 ⁄ 3].

All segments in Fig. 2a given below show the routes of advancement of solutions at check points 1–4 (curves
1–4 respectively) from the starting conditions with the value of γ = γ0 to the final solution with γ = γs. In these fig-
ures, the evolution (the dependence on the interaction step number) of the local gas density ρ(N) is analyzed. As scale
values, ρ∞, V∞, and R are used, which makes it possible, if necessary, to convert the dimensionless parameters to di-
mensional ones.

Figure 2a shows the RASs from the SCs with γ0 = 1.67 to the FS with γs = 1.4. For this variant, the FS is
a stationary solution that had reached the steady state by N = 600, and at points 1 and 2 thereby the steady state had
been reached much earlier. In this calculation (and in other calculations unless otherwise specified), a very small step,
τ = 0.001, was specially used to obtain detailed information about the RAS (generally speaking, the algorithm for ob-
taining stationary solutions, if any, admits much larger τ). The FS obtained is a unique solution: the use of other in-
itial data led to one and the same FS with the only difference in the RAS. Analogous RAS patterns took place
throughout the subrange of γ > 1.12: all FSs obtained were stationary and unique for any SC used in the experiment.
This result was expected, since these FSs lie in the stability region (see [1]).

A different situation arises when the calculation parameters approach the boundary of neutral stability. Figure
2b shows the RAS for calculating the problem with γs = 1.11 and γ0 = 1.2. The FS is already quasi-stationary with a
small oscillation amplitude of the order of 0.5 and 1% at points 3 and 4, respectively, and at points 1 and 2 the FS
practically had reached the steady state by the instant N = 1000. The attraction basin of this type of FSs is a large
region of SCs: in the range of γ0 2 (1.12, 1.2) all FSs were quasi-stationary, with an undamped low level of oscilla-
tions about one and the same value.

Because of the small amplitude, we failed to localize the source of oscillations. There is a proposal that this
source is the intersection point of the sonic line and the front shock. More definite conclusions in favor of or against
this proposal are rather difficult to draw despite the fact that there is complete information on the numerical solution.
This is due to the fact that along the front shock surface from point 2 to point 4 the change in the parameters and
the amplification of the oscillation background are so smooth that it is difficult to single out any special gradient zone
and determine it definitively as a "disturbance source." One can also make an alternative proposal that the disturbance
source as such does not exist at all but the whole front shock wave oscillates weakly, and the oscillation amplitude
thereby, naturally, increases downstream.

Figure 2c shows the RASs for the problem with γs = 1.10 and γ0 = 1.11. The FS has changed its quasi-sta-
tionary periodic character with a small oscillation amplitude and became quasi-stationary pseudoperiodic. Here the term
"pseudoperiodic" is more precise than, e.g., "aperiodic" because there occur some "bursts" that are repeated at a certain
interval for a long time and this interval changes with time. The foregoing concerns point 4: the FSs at points 2 and
1 (hereinafter referred to as FS-2 and FS-1, etc.) had already reached the steady state by N = 200 and 1000, respec-
tively, and the FS-3 oscillation amplitude does not exceed 5%. But the deviations of FS-4 from the mean are consid-
erable, up to 20–30%, and cannot be called "oscillations." In our opinion, here FS-4 makes attempts to make a
transition to another branch of the solution, but a certain mechanism "returns" it to the first branch. The variants of
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the experiment for λs = 1.10 have shown the following. The algorithmic variants (computing mesh, iteration step) led
to the same, in principle, RASs: RAS-1, -2, -3 were practically indistinguishable from one another, and all RASs-4,
differing in details, had one and the same characteristic feature — an "outburst" of parameters at certain intervals, and
their positions thereby correlated fairly well with one another. Note that the level of initial disturbances determined by
the difference of γ0 and γs, as mentioned above, also determined the possibility of revealing the probable transition of
the solution from one branch to another. Therefore, in the computing experiment γ0 should not differ considerably

Fig. 2. Trajectories of advancement of solutions at reference points 1–4 (curves
1–4, respectively) from the starting conditions γ0 to the final solution γs: a)
from 1.67 to 1.4; b) 1.2 to 1.11; c) from 1.1 to 1.10; d) from 1.1 to 1.08; e)
from 1.08 to 1.07; f) from 1.08 to 1.06; g) from 1.06 to 1.055; h) from 1.07
to 1.05; i) from 1.05 to 1.03.
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from γs, since from the theory of bifurcations it is fairly well known that a disturbed strongly oscillating field of pa-
rameters in the vicinity of the branching point may not enable the solution to go to any branch, leading to continuous
and chaotic transitions from one branch to another (especially when the damping mechanism of oscillation energy dis-
sipation is deficient or absent).

Figure 2d shows the RASs for the problem with γs = 1.08 and γ0 = 1.1. In this experiment, we managed to
reveal a bifurcation point in the hyperspace of diagnostic variables. We turn our attention to RAS-4: after a few "futile
attempts" of the solution (at N = 150, 900, 1200, 1600, 2300) to go from one branch to another the transition, never-
theless, was made at N = 2700 (the value of the dimensionless time Nτ = 2.7) and FS-4, which was a quasi-stationary
pseudoperiodic solution with a large amplitude, acquired the character of a quasi-stationary solution with a small
(about 6%) oscillation amplitude. FS-1 and FS-2 thereby were still steadily stationary, and FS-3 had a weakly oscilla-
tory character in the absolute "absence of the reaction" to the transition of FS-4. This shows that the general solution
of the problem — the flow in the disturbed region — has changed in a specific way: the front shock angle in the
lower (downstream) region of the flow has changed with the redistribution here of the gas-dynamic parameters. It will
be recalled that equations of classical aerodynamics lead to a nonuniqueness of the solution of the problem of the su-
personic flow inleakage on an obstacle (wedge, cone) with two possible values of the shock front angle. However, it
is impossible to directly compare the classical solutions with the bifurcation solution under consideration because of
the considerable inadequacy of the problems: nonuniformity of the supersonic flow of a blunt body and homogeneity
(uniformity of the stream) of the classical problem.

The dashed line in Fig. 2d marks RAS-2 for the same problem with doubled τ. The transmission took place
at N = 1500, i.e., at a value of the dimensionless time Nτ = 3, which correlates well (difference of 10%) with the
previous result.

Figure 2e shows the RAS of the calculation of the problem with γs = 1.07, for which, as SCs, the FSs at
γ0 = 1.08 were taken from that branch of the solution which is characterized by a larger shock angle, i.e., before the
transition to another branch (Fig. 2d). In this case, the transition of RAS-4 to "its" branch of the solution was made
fairly quickly (at N = 300). Note that FS-3 and FS-4 have an oscillatory "almost" periodic character with a large
wavelength (∆N C 500) with a fairly high (10–20%) oscillation amplitude. We turn our attention to RAS-1: unlike the
previous variants of the problems, where all RASs-1 very quickly converged to a constant value, here this process was
rather long and RAS-1 got to its asymptote even later than the transition in RAS-4 was made.

The experiment shown in Fig. 2f was performed in the "reverse" way: for the calculation with γs = 1.06, we
used, as the SCs, the FSs with γ0 = 1.08 from "their" branch of the solution. In this case, in the absence of the "ne-
cessity" of transition, all RASs smoothly adjusted themselves to the new FSs, which, while being quasi-stationary ape-
riodic, have a low (up to 5%) oscillation amplitude. However, as in the previous experiment, RAS-1 has the same
prolonged time of reaching the steady state. This is a natural and expected result, since in high-speed flows distur-
bances are carried downstream (except for the boundary layer), and the level of disturbances, which is not too high in
the leeward zone of the flow as well, practically did not affect the parameters in the windward zone.

The experiment illustrated in Fig. 2g had a longer iteration time. In this experiment, the transition of the so-
lution from one branch to another was also predicted a priori. For the problem with γs = 1.055, we chose, as the SCs,
the FS of the problem with γ0 = 1.06 with a small γs − γ0 difference so that the initial level of disturbances was not
too high and did not provoke an oscillatory regime with a large amplitude in the vicinity of the bifurcation point,
which could have led to numerous and chaotic transitions of the solution from one branch to another. It shows up as
an unstable regime with a possibly unlimited growth of oscillations.

In this experiment, RAS-1 and RAS-2 very quickly brought the solutions to the steady state, and for RAS-3
and RAS-4, after a prolonged quasi-periodic regime (with a mean amplitude of D5% in RAS-4 and 10% in RAS-3) a
practically simultaneous (in the region of N = 4500) transition to another branch of the solution took place. Note that
in the case of an early termination of this computing experiment the transition would not have been noticed, since the
character of the solutions that had been obtained by this time, while being quasi-periodic but with a limited, small, and
nonincreasing amplitude, gave no reason to predict the possibility of the transition.

Then, after the transition, RAS-3 and RAS-4 acquired a quasi-stationary character with oscillations at some
mean line and amplitudes even smaller than before the transition. The positions of the mean lines before and after the
transition changed for RAS-4 by 20% and for RAS-3 by 40%.
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This experiment was complemented by starting the same problem with γs = 1.055 but with the SCs taken
from the solution of the problem with γ0 = 1.07 (of another branch). The results are presented in Fig. 2g by dashed
lines. In this case, the level of initial disturbances was higher than in the main start (γs = 1.06). Therefore, the transi-
tion took place earlier (at N = 1300), although all the other mesh-algorithmic parameters were the same. The character
of FS-3 and FS-4 was weakly oscillatory, analogous to the previous ones, with the same values of the level of the
mean line. Note that in this experiment for the first time (at varied γs) the transition to RAS-3 appeared (before this
it showed up only on RAS-4).

To analyze this phenomenon, we performed an experiment with a further decrease in γs down to 1.05. As
SCs, we took the data from the first branch of the previous calculation (the use for SCs of the second, concluding
branch of the solution led to expected results — the solution changed smoothly, staying on the same branch). The re-
sults given in Fig. 2h confirm the steady presence of the transition from one branch to another simultaneously in
RAS-3 and RAS-4 (at N = 1900).

The last of the numerical experiments presented here is shown in Fig. 2i. To solve the problem with a very
small value of γs = 1.03, we used the SCs of the solution of the problem with γ0 = 1.05 from the second branch of
the solution (on which the calculation shown in Fig. 2h was finished).

However, instead of expected RASs analogous to those obtained in the previous experiments of this set (with
the oscillatory character of the existence on one branch of the solution also after some length of time, sometimes a
very long one, of the transition to the second branch with a quasi-stationary regime and a low oscillation amplitude in
RAS-3 and RAS-4 with a complete stationary picture of RAS-1 and RAS-2), a radically different result was obtained.
Instead of the smooth line of the solution rearrangement, RAS-1 had a very stochastic form: an almost constant value
on the initial segment, a sharp increase at time N = 100, then an almost horizontal "shelf," and, from time N = 200
on, a sharp but smooth decrease. Then such a character of the RAS-1 evolution was repeated several times (three cy-
cles are visible) with a considerable decrease in the amplitude and by the time N = 700 RAS-1 becomes completely
stationary — a straight line, as in the previous experiments. RAS-2 weakly follows these cycles of RAS-1 (with a
more or less appreciable reaction only to the first of them) and then goes to the stationary solution. RAS-3 and RAS-
4, too, have a different character than in the previous experiment: an almost nonoscillatory regime on the first length
of time, the transition to "another branch" of the solution at time N = 200 for RAS-300 and N = 380 for RAS-4, and
then the traditionally quasi-stationary behavior with small-amplitude oscillations near a certain constant mean line. Here
the term "another branch" is put in quotes on purpose: first, the transition was realized with an increase in the numeri-
cal value of the solution, and all previous experiments had shown the transition from the first to the second branch
only with a decrease in the traced value and never vice versa; second, the increase in the values in the downstream
zone of the flow can simply be due to the nonstationary process of reorganization of the whole flow after the disap-
pearance of the RAS-1 maximum.

To check the influence of the mesh parameters on the form of the solution obtained, the presented calculation
was doubled several times with a gradual increase in the number of mesh nodes (by a factor of 100 in each coordinate
direction), all other parameters of the computing experiment remaining unchanged. In so doing, the results of the in-
itial calculation were repeated completely.

Discussion of the Problem: "Carbuncle" — Computational Effect or Physical Reality? By the "carbuncle"
effect [9, 10] is meant the "swelling" of a part of the front shock arising in the windward zone of the flow, which
steadily exists for a fairly long time. In general, this phenomenon is similar to the picture arising at a super- or a hy-
personic flow of a blunt body by a gas flow with localized power supply (e.g., focused laser radiation [11]) to the
incoming flow. In this case, the "carbuncle" effect can be explained in terms of the real physical process: the central
part of the front shock is formed in the region of the nonuniform incoming flow, which leads to a "forward runaway"
of a part of the front shock if the gas temperature before it is higher (and, accordingly, the density is lower). Note
that such an effect can be attained by injecting gas (or plasma, which is more effective [12]) with the appearance of
a so-called "aerodynamic needle," and the injection intensity determines the front shock configuration with a swelling
of its central part in the direction of the mainstream incoming flow.

In the computer simulation of the hypersonic flow of blunt bodies, the computation algorithms enable one to
calculate the "carbuncle" effect in an essentially different manner. Figure 3 shows the numerical solutions of one and
the same problem carried out by several algorithms (for more details see [9]).
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To the two-dimensional picture given in Fig. 3b (density isolines in the flow field) there corresponds the frag-
ment of the one-dimensional curve of RAS-1 (given in Fig. 2i) with the maximum in the zone of the flow stagnation
line that arose at time N = 100 and disappeared by time N = 250. In this experiment, as in [9, 10], there are no ex-
ternal factors capable of changing so strongly the form of the front wave, but, nevertheless, the "carbuncle" effect
steadily takes place in a certain range of parameters (in this case, at very small values of the effective adiabatic index
and high hypersonic Mach numbers). In the beginning of the supersonic range, at M∞ < 4 this effect was not obtained
at any values of γ even very close to its limiting value — unity.

It may be stated with a certain degree of caution that the existence domain of the "carbuncle" effect follows
in the plane (M∞, γ) the boundary of the strong instability domain [1, 4, 5] (in any case, it correlates well with it). In
this domain, the external disturbance sources of the finite amplitude are capable of destroying the stationary flow pat-
tern, leading to an unlimited growth of the solution, i.e., they provide, speaking in terms of the present work, the tran-
sition of the calculation from the stable branch of the solution to the unstable one.

In [9, 10], the situation with the "carbuncle" effect is somewhat different. The aim of the extensive investiga-
tion in [9] is to analyze various algorithms and the program codes realizing them, sorting according to the possibility
of getting solutions with a strong (Fig. 3b, c, e, f) and a weak (Fig. 3d, f) "carbuncle" or without a "carbuncle" (Fig.
3h, i–n) on one and the same problem — a hypersonic (M∞ = 20) flow of a blunt tip of a body. Debatable questions
(we can agree to some of the arguments given in [9] but some of them raise objections) are beyond the scope of the
present paper, but we must pose the principal question: are the "highly carbuncular schemes" of lower quality? And
should one construct algorithms providing smoothness of the front shock at any price? What results will the use of
such codes to calculate problems with power supply [11] or plasma injection [12] into the incoming flow yield? In our
opinion, "careless" use of "highly stable" (in terms of [9], "carbuncle-free") algorithms can make it impossible to in-
vestigate problems in which instabilities that are due to physical causes take place and, the more so, problems of
nonuniqueness of numerical solutions.

Fig. 3. Flow of blunt bodies by a hypersonic gas stream. Calculation mesh (a)
and density isolines (b–n). Schemes with the presence of the "carbuncle" ef-
fect: FDSROG (b), FDSPAN (c), HUS (d), HLLC (e), AUSMV (f), AUSMD
(g) and with its absence: FVSVL (h), HLL (i), AUSMV-VEL (j), AUSM-M
(k), AUSM + (l), SHOFIT (m).
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The importance of these problems will increase due to the development of multiprocessor computer systems
and parallel counting algorithms [13], which will make it possible to go to a much higher level of mathematical mod-
eling of physical gas dynamics problems.

This work was supported by the Russian Basic Research Foundation (projects 00-07-90297 and 02-01-00097).

NOTATION

M, Mach number; Re, Reynolds number of the incoming flow; Pr, Prandtl number; γ, effective adiabatic index
of the gaseous medium; ρ, gas density; ω, degree of temperature dependence of the heat-conductivity coefficient; β,
angle of the conical part of the body; R, radial coordinate counted from the center of the spherical blunting of the
body; N, iteration number; τ, time step of the algorithm. Indices: 0, starting conditions of the calculation; s, conditions
of current calculation (after the shock wave); ∞, values in the region of the incoming flow.
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